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1. Introduction

In a first paper of a self-contained series dedicated to comment several
aspects of the density functions [1], including the comparison of two of them, the
description and generation of two possible atomic basis sets was the main task.
In the present work, the second paper of the series, the Mulliken atomic basis
set will be used for constructing matrix representations of the density function
and further details on density functions relationships, will be studied. Extension
to second order density problems will be finally sketched.

2. First order density function in LCAO MO theory

It is well known that first order molecular density can be expressed within
LCAO MO theory in a very general manner, first with the form:

ρM (r) = 〈Γ∗ |m0〉 〈m0|〉 =
∑

i

∑

j

γi j |i0〉 〈 j0|, (1)
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where Γ = {
γi j

}
is a Hermitian coefficient matrix, whose elements depend on

the computational level employed to obtain the molecular wave function, and
|m0〉 = {|i0〉} a column vector the whose elements are the one-electron MO func-
tions, which is used to construct a tensor product, yielding an object of the same
dimension as the coefficient matrix Γ . In the form used within equation (1), the
coefficient matrix and the MO tensor product are multiplied using an inward
matrix product1 and submitted to a complete sum [2].2

The first order density function has a Minkowski norm equal to the number
of electrons, NM , of the molecule M considered, that is one can write:

〈ρM 〉 =
∫

D
ρM (r) dr = NM .

In a further step, the matrix Γ can be diagonalized by means of a unitary matrix
U, fulfilling: U+U = UU+ = I, such that:

ΓU = U� → � = Diag (ωi ) ∧ Γ = U+�U;
in this manner, substituting the coefficient matrix by its spectral decomposition,
as written above, the first order density matrix can be expressed as:

ρM (r) = 〈
U+�U∗ |m0〉 〈m0|

〉 =
∑

i

∑

j

(
∑

k

u∗
ki uk jωk

)
|i0〉 〈 j0|

= 〈
�∗U+ |m0〉 〈m0| U

〉 =
∑

i

ωi |i〉 〈i |

where it has been used the new transformed MO column matrix:

U+ |m0〉 = |m〉 = {|i〉} ∧ |i〉 =
∑

k

u∗
ki |k0〉.

As a result of these previous considerations, the diagonal form of the density
function can be used in general for any purpose. Hence, in this paper without
loss of generality the first order density function diagonal form:

ρM (r) =
∑

i

ωi |i〉 〈i | (2)

will be employed thereafter.

1The inward matrix product between two matrices: A = {
ai j

} ∧ B = {
bi j

}
of dimension (m × n), is

defined as a matrix of the same dimension by means of the algorithm: A∗B = P = {
pi j

} → ∀i, j :
pi j = ai j bi j .
2The complete sum of the elements of a matrix of arbitrary dimension (m × n): A = {

ai j
}
, is des-

cribed according to the algorithm: 〈A〉 =
m∑

i=1

n∑

j=1
ai j .
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3. Density function in the LCAO framework

Now it can be considered that MO are usually expressed in the LCAO for-
malism; that is, knowing a one-electron basis set, which can be expressed in a
column vector form: |x〉 = {|µ〉}, then the MO set is expressed as a linear com-
bination of the basis functions:

∀i : |i〉 = 〈
c∗

i |x〉〉 =
∑

µ

cµi |µ〉,

where: ci = {
cµi

}
are the coordinates of the ith MO with respect to the basis

set |x〉. Substituting the LCAO MO expansion into the density function (2), one
arrives to the well-known expression:

ρM (r) = 〈
D∗ |x〉 〈x|〉 =

∑

µ

∑

ν

Dµν |µ〉 〈ν|, (3)

with the so-called charge and bond order matrix D, defined as follows:

D = {
Dµν

} =
∑

i

ωi ci c+
i .

4. Metric matrix and Mulliken projectors

Then, one can take into account that the AO basis set |x〉 is customarily
attached to the atomic centers, I say, of a given molecule, M , so formally one
can write:

∀µ ∈ I ∧ I ∈ M : |µ〉 ≡ χµ (r |RI ) → |µ〉 ∈ I

where RI are the position coordinates of atomic center I . Thus, there can be
computed a positive definite metric or overlap matrix for the AO basis set, which
can be formally written as:

S =
∫

D
|x〉 〈x|dr = {

Sµν

}
.

For a given molecular structure, a set of Mulliken projectors can be construc-
ted in such a way that, applied to the molecular density function, yield a density
function associated to the AO belonging to a given atomic center [3]:

∏
I

=
∑

α∈I

∑

J

∑

β∈J

S(−1)
αβ |α〉 〈β|,
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that is:

∏
I

[ρM ] =
∑

α∈I

∑

J

∑

β∈J

S(−1)
αβ |α〉 〈β|

[
∑

µ

∑

ν

Dµν |µ〉 〈ν|
]

=
∑

α∈I

∑

J

∑

β∈J

∑

µ

∑

ν

Dµν S(−1)
αβ Sµβ |α〉 〈ν|

=
∑

α∈I

∑

µ

∑

ν

Dµνδαµ |α〉 〈ν| =
∑

α∈I

∑

ν

Dαν |α〉 〈ν| = ρI

The result of the Mulliken projectors over the density function can be related to
the quantum mechanical background of the Mulliken atomic populations [3B].

5. Density function as a superposition of atomic contributions

Therefore, as the Mulliken projectors fulfill:
∑

I∈M

∏
I

= Î ,

being Î the unit operator, then, it can be written:

ρM (r) =
∑

I∈M

ρI (r).

The set of Mulliken atomic density functions obtained in this way:
{ρI (r) |I = 1, nM }, has to necessarily form a basis set, able to construct the
molecular first order density function with coordinates equal to the unity vec-
tor: |1〉 = {1k = 1}, a vector whose elements are the real unit element. The
Mulliken atomic density functions basis sets are necessarily dependent on the
computational level and on the completeness of the AO basis set employed in
order to obtain the molecular wave function, but for a given molecular struc-
ture, the dimension of the subtended semispace will be always the same, nM , the
number of atoms or AO centers present in molecule M . For that reason, the
semispace generated by the atomic density basis set in a given molecular frame
is nM -dimensional.

6. The Mulliken atomic density functions as basis sets

Here some consequences of the definition of the Mulliken atomic density
basis sets are analyzed [1]. First the metric properties of the space generated by
the Mulliken atomic densities will be studied, then the Mulliken metric matrices,
which will represent in a discrete fashion the density function of a molecule, will
be constructed for some simple systems, finally the diagonalization of the metric
matrices will be put forward.
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(a) The Mulliken atomic density metric matrix as a similarity matrix.

The set of Mulliken atomic density functions seen as a basis set, has to pos-
sess a positive definite metric matrix of dimension (nM × nM) in the Euclidian
scalar product sense. It is easy to find out that the Mulliken atomic similarity
matrix:

Z = {zIJ |∀I, J ∈ M }, (4)

where:

zIJ =
∫

D
ρI (r) ρJ (r)dr = 〈ρI |ρJ 〉 (5)

constitute an adequate Euclidean metric, associated to the Mulliken atomic den-
sity basis set functions: {ρI }.

Alternatively, from a formal point of view, the construction of the
Mulliken atomic similarity matrix can be described in the following manner. The
set of Mulliken atomic density basis set functions can be ordered into a nM -
dimensional column vector as:

|ρ〉 = {ρI (r)}. (6)

Then it can be formally written:

Z =
∫

D
|ρ〉 〈ρ| dr.

The molecular density function is consequently expressible in terms of the com-
plete sum of the atomic density vector:

ρM = 〈|ρ〉〉 ;
moreover, the molecular self-similarity can be written as the complete sum of the
elements of the Mulliken atomic similarity matrix:

zM =
∫

D
|ρM (r)|2dr = 〈Z〉.

To illustrate the previous discussion, a set of simple examples will be given.

(b) Elementary atomic similarity matrices.

(i) Homonuclear Diatomic Molecules.

In homonuclear diatomic molecules the density basis set vector can be writ-
ten in this case as:

|ρ〉 =
(

ρA1

(
r − RA1

)

ρA2

(
r − RA2

)
)

,
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then the molecular density can be written as:

ρA−A (r) = 〈|ρ〉〉 = ρA1

(
r − RA1

) + ρA2

(
r − RA2

)

and the atomic similarity matrix can be written in any case as:

ZA−A =
∫

D

(
ρA1

ρA2

) (
ρA1 ρA2

)
dr (7)

=
(∫

D ρA1ρA1dr
∫

D ρA1ρA2dr∫
D ρA2ρA1dr

∫
D ρA2ρA2dr

)
=

(
α β

β α

)

and the eigenvalues of ZA−A are: θ± = α±β. Taking into account that the selfsi-
milarity α, located into the diagonal, will be always greater than the off-diagonal
term β, which heavily depends on interatomic distance; otherwise, the equality
α = β will mean both molecular centers are collapsed into a unique coordinate.
Therefore, this situation will always yield: θ± > 0. Thus, the atomic density func-
tions similarity matrix for homonuclear diatomic molecules is positive definite.

The molecular self-similarity can be easily written in this case as:

z A−A =
∫

D
|ρA−A|2 dr = 〈ZA−A〉 = 2 (α + β) = 2θ+.

This kind of development reminds of Hückel MO theory, although there is
quite a great difference when HMO is compared with the basic theoretical back-
ground of the present atomic density basis set theory.

(ii) Homonuclear simplex molecules: equilateral A3 and tetrahedral A4
molecules

The resemblance with HMO theory can go further on if one sets up the
Mulliken atomic density similarity matrices for simplex structures made of three
or four atoms.

In this case, again it shall be taken into account that the atomic density vec-
tor for A3 can be written as:

|ρ〉 =
⎛

⎝
ρA1

(
r − RA1

)

ρA2

(
r − RA2

)

ρA3

(
r − RA3

)

⎞

⎠3,

so the Mulliken atomic density similarity matrix can be easily be written as in
the diatomic case, but adding a new row and column:

Z =
⎛

⎝
α β β

β α β

β β α

⎞

⎠
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A similar structure can be obtained for both density vector and similarity matrix
for the tetrahedral form. The similarity matrix can be written in both cases,
including even the diatomic studied example, as:

Z = αI + β (1 − I) = (α − β) I + β1, (8)

where 1 = {1I J = 1} is a unity matrix of appropriate dimension. The secular
equation of such matrices can be written as:

ZuI = θI uI,

so, using the definition (8) it can be transformed into the secular equation of the
unity matrix:

1uI = β−1 (θI − (α − β)) uI = µI uI ,

which has two kinds of eigenvalues: µ1 = nM ∧ ∀I = 2; nM : µI = 0, thus the
eigenvalues of the similarity matrix will be:

θ1 = α + (nM − 1) β ∧ ∀I = 2; nM : θI = α − β,

which proves that for this kind of structures the atomic density similarity matrix
will be positive definite.

(c) Diagonalization of the Mulliken atomic density metric matrix.

As a positive definite matrix, the Mulliken atomic density similarity matrix
is a symmetric one. Due that such a metric matrix is defined over the Mulliken
atomic density functions, which are positive definite functions, and then their ele-
ments are in any case real and positive. Also, this means there exists an ortho-
gonal matrix: U → UUT = UT U = I, which diagonalizes the matrix Z, or that
the matrix eigensystem:

ZU = UΘ → Θ = Diag
(
θ1; θ2; . . . θnM

)

holds, with the diagonal matrix Θ containing the real positive eigenvalues.

7. Mulliken atomic density basis set relationships

Given two distinct density functions:
{
ρ0;M ; ρ1;M

}
, associated to a given

molecule with fixed geometry, there can be constructed two basis sets made of
atomic density functions:

(µ = 0, 1) : ρµ;M =
∑

I∈M

ρµ;I → ∣∣ρµ

〉 = {
ρµ;I

}
.
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Every atomic density basis set generates an atomic similarity metric matrix:

(µ = 0, 1) : Zµµ =
∫

D

∣∣ρµ

〉 〈
ρµ

∣∣ dr.

Also, as a result of a well-known property of vector spaces, a non-singular
transformation matrix, T say, shall connect the known basis sets. To obtain such
a transformation matrix, one can write for instance:

|ρ1〉 = T |ρ0〉 , (9)

which can be formally changed into:
∫

D
|ρ1〉 〈ρ0|dr = T

∫

D
|ρ0〉 〈ρ0|dr → Z10 = TZ00,

therefore, the transformation matrix can be obtained by means of:

T = Z10Z−1
00 (10)

and at the same time the inverse transformation can be obtained as:

Z11 = TZ01 → T−1 = Z01Z−1
11

taking into account that:

Z01 = ZT
10.

As an example of this possible relationship, one can use the molecular den-
sity ρ0;M as the HF density matrix, computed with a given basis set, and ρ1;M
as a KS density for the same molecule using the same nuclear coordinates as in
the HF calculation. According to the previous discussion both density functions
shall be related, as the respective atomic basis set vectors are related by means
of a relationship of the kind (9):

|ρ1〉 = T |ρ0〉 → ∀I ∈ M : ρ1;I =
∑

J∈M

TIJ ρ0;J

so it can be written:

ρ1;M =
∑

I∈M

ρ1;I =
∑

I∈M

∑

J

TIJ ρ0;J =
∑

J∈M

[
∑

I∈M

(TIJ )

]
ρ0;J =

∑

J∈M

tJ ρ0;J .

The coefficients, which are the sums of the columns of the transformation
matrix:

∀J ∈ M : tJ =
∑

I∈M

TIJ
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are the coordinates of the molecular density function ρ1;M with respect to the
basis set |ρ0〉.

The values of the final coefficients can be expressed in terms of the atomic
similarity matrices involved:

∀J ∈ M : tJ =
∑

I

TIJ =
∑

I

∑

K

z10;I K z(−1)

00;KJ (11)

the coefficients can be ordered as elements of a column vector, |t〉= {tJ |J=1; nM },
and thus the molecular density function can be written compactly as:

ρ1;M = 〈t |ρ0〉.

8. Least squares fitting

The previous procedure although correct from an algebraic point of view,
cannot provide an exact relationship between both density functions due to the
nature of the Hilbert semispace involved, because of this the density function
relationship previously found, can be proved equal to an approximate uncons-
trained fitting of one density function with respect the atomic basis set of the
other. In this section this possibility will be discussed.

8.1. Unconstrained fitting

Suppose one tries to obtain a relationship between both densities in an
approximate way, using the atomic density basis set generating another density
function for the same molecular structure, or:

ρ
(a)

1;M ≈
∑

I∈M

aI ρ0;I (12)

then, the quadratic error can be introduced:

ε(2) =
∫

D

∣∣∣ρ1;M − ρ
(a)

1;M

∣∣∣
2
dr = θ1;M +

∑

I∈M

∑

J∈M

aI aJ z00;I J − 2
∑

I∈M

aI zI

where the elements {zI } are defined as:

zI =
∫

D
ρ1;Mρ0;I dr =

∑

J∈M

∫

D
ρ1;J ρ0;I dr =

∑

J∈M

z10;J I → |z〉 = {zI }.

The quadratic error can be also expressed as:

ε(2) = θ1;M + 〈a| Z00 |a〉 − 2 〈z|a〉, (13)
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after collecting the fitting coefficients into a column vector:|a〉 = {aI }. From the
above expression (13), it is obtained for the optimal coefficient vector, the trivial
result:

|a〉 = Z−1
00 |z〉. (14)

This is the same as to write:

∀I ∈ M : aI =
∑

J∈M

z(−1)

00;I J z J =
∑

J∈M

z(−1)

00;I J

(
∑

K∈M

z10;K J

)

=
∑

K∈M

∑

J∈M

z(−1)

00;I J z10;K J =
∑

K∈M

∑

J∈M

z10;K J z(−1)

00;J I

however, this result is exactly the same, as it shall be expected, as the previous
one in equation (11), or:

∀I ∈ M : aI = tI → |a〉 = |t〉.
Therefore the transformation (10) corresponds to an unconstrained least

squares fitting between both density functions.

8.2. Constrained least squares

The previous result indicates that the sum of coefficients relating both den-
sity functions has in general no other definite value than the following one,
which can be easily computed as:

〈|a〉〉 =
∑

I∈M

aI =
∑

I∈M

∑

K∈M

∑

J∈M

z10;K J z(−1)

00;J I =
〈
Z10Z(−1)

00

〉
,

providing a Minkowski norm of the fitted density different from the number of
electrons, NM , in the associated molecule:

〈
ρ

(a)

1;M

〉
=

∑

I∈M

aI
〈
ρ0;I

〉 =
∑

I∈M

aI N0;I,

where the set of atomic density Minkowski norms:

∀I ∈ M : N0,I = 〈
ρ0;I

〉 → |N0〉 = {
N0,I

}

coincide with the Mulliken atomic charges, and thus: 〈|N0〉〉 = NM . For the exact
density function ρ1;M , the Minkowski norm will produce the same result:

〈
ρ1;M

〉 =
∑

I

〈
ρ1,I

〉 =
∑

I

N1,I = NM .
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It seems plausible, when optimizing the quadratic error (13), in a first instance,
that a constraint like:

∑

I∈M

aI N0;I = NM

for the coefficients |a〉 shall be taken into account. Such a constraint can be
included by means of a Lagrange multiplier and constructing the augmented
function:

L = ε(2) − λ (〈N0|a〉 − NM),

the null gradient condition will be now written:

2Z00 |a〉 − 2 |z〉 − λ |N0〉 = |0〉;
from where one can obtain the constrained coefficients as:

|a〉 = Z−1
00

(
|z〉 + 1

2
λ |N0〉

)
(15)

from equation (15), the Lagrange multiplier is readily found to be expressed as:

NM = 〈N0|a〉 = 〈N0| Z−1
00 |z〉 + 1

2
λ 〈N0| Z−1

00 |N0〉

implying that:

λ = 2
(
〈N0| Z−1

00 |N0〉
)−1 (

NM − 〈N0| Z−1
00 |z〉

)
. (16)

Substituting equation (16) into (15) it is easily obtained:

|a〉 = Z−1
00

(
|z〉 +

(
〈N0| Z−1

00 |N0〉
)−1 (

NM − 〈N0| Z−1
00 |z〉

)
|N0〉

)
.

The appropriate coefficients possess the unconstrained least squares result
in a first part, as discussed in the unconstrained case above, plus a correction
including the number of molecular electrons and the vector of Mulliken atomic
populations. They can be rewritten in the following manner, using the symbol
|aU 〉 for the unconstrained solution (14):

|a〉 = LZ−1
00 |z〉 = L |aU 〉

where the matrix L is defined with the expression:

L = (I + η |N0〉 [〈1| − 〈N0|]) ∧ η = NM

(
〈N0| Z−1

00 |N0〉
)−1

. (17)
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Using these last expressions it can be further written:

|a〉 = |aU 〉 + σ |N0〉 ∧ σ = η (〈|aU 〉〉 − 〈N0|aU 〉), (18)

which proves that the correction to the unconstrained least squares solution is
just made of the scaled Mulliken atomic population vector.

8.3. Convex constrained coefficients

A final remark is due now. As it has been proved and subsequently used in
several previous work [1, 4], the above discussed constrained least squares proce-
dure do not provide a set of more tightly constrained coefficients |a〉, which can
be proved positive definite for any molecule in general. In order to obtain such
a further constrained coefficient set some additional scheme shall be followed.
In fact the algorithm used to obtain approximate promolecular atomic densities
has been employed in various cases, producing the so-called ASA form of atomic
density functions [4].

In order to work the appropriate algorithm to obtain the least squares coef-
ficients relating a given molecular density with the atomic density basis set of
another calculation, there is better to transform the densities as to become mem-
bers of the unit shell of the vector semispace where they belong. So, the implied
density functions of equation (12) may be written as:

σ
(a)

1;M ≈
∑

I∈M

αI σ0;I ,

where unit shell shape functions [shape functions] are used, that is:

〈
σ

(a)

1;M

〉
= 1 ∧ ∀I : 〈

σ0;I
〉 = 1 →

∑

I∈M

αI = 1

In these circumstances the augmented quadratic error function can be written as:

L = θ
(1)

1;M + 〈α| Z(1)

00 |α〉 − 2
〈
z(1)|α

〉
− λ (〈ν0|α〉 − 1),

where the superscript (1) means that the corresponding matrix elements are com-
puted over the shape functions, and the scaled population vector is defined as:

|ν0〉 = N−1
M |N0〉 → 〈|ν0〉〉 = 1;

that is: the population vector has been converted into a discrete probability dis-
tribution. This can be seen as a natural consequence of using shape functions.
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One can envisage the task of obtaining the coefficient vector |α〉 as a convex
vector, belonging to the unit shell of the appropriate semispace. In order to
consider this possibility, there one can generate it by means of:

R (|x〉 → |α〉) : |α〉 = |x〉 ∗ |x〉 =
∣∣∣x2

〉
→ ∀I : αI = x2

I .

And in order to have the convex conditions: K (|α〉) fulfilled, it is only
necessary that the generating vector |x〉 become normalized in the Euclidean
sense: 〈x |x〉 = 1. So, the augmented function can be written:

L = θ
(1)

1;M +
〈
x2

∣∣∣ Z(1)

00

∣∣∣x2
〉
− 2

〈
z(1)|x2

〉
− λ

(〈
ν0|x2

〉
− 1

)
,

and its gradient can be written as:

∂L

∂ |x〉 = 4 |x〉 ∗
(

Z(1)

00

∣∣∣x2
〉
−

∣∣∣z(1)
〉
− 1

2
λ |ν0〉

)
.

The null gradient condition provides:

Z(1)

00

∣∣∣x2
〉
−

∣∣∣z(1)
〉
− 1

2
λ |ν0〉 = |0〉,

from where the coefficient vector can be obtained:

|α〉 =
∣∣∣x2

〉
=

(
Z(1)

00

)−1
(∣∣∣z(1)

〉
+ 1

2
λ |ν0〉

)

which permits in turn to evaluate the Lagrange multiplier, taking into account
that: 〈ν0|α〉 = 1, as:

λ = 2 〈ν0|
(

Z(1)

00

)−1 |ν0〉−1
(

1 − 〈ν0|
(

Z(1)

00

)−1 ∣∣∣z(1)
〉)

.

Now, calling:

|γ 〉 =
(

Z(1)

00

)−1 |ν0〉 ∧ |η〉 =
(

Z(1)

00

)−1 ∣∣∣z(1)
〉
,

then it can be written:

|α〉 = |η〉 +
(
〈γ |ν0〉−1 (1 − 〈ν0|η〉)

)
|ν0〉. (19)

In turn, calling the coefficient in the second term:

χ = 〈γ |ν0〉−1 (1 − 〈ν0|η〉)
allows to write the constrained coefficients as:

|α〉 = |η〉 + χ |ν0〉,
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a result similar to the former constrained procedure described above.
In this case, however, one can also further develop the structure of the coef-

ficient vector rearranging terms in expression (19), renaming the coefficient:

θ = 〈γ |ν0〉−1.

then it can be written:

|α〉 = |η〉 + θ (|ν0〉 − |ν0〉 〈ν0|η〉) → θ
[(

θ−1I − |ν0〉 〈ν0|
)

|η〉 + |ν0〉
]
;

furthermore, constructing the matrix:

K = 〈γ |ν0〉 I − |ν0〉 〈ν0| ,
then it can be written:

|α〉 = θ [K |η〉 + |ν0〉] .

9. Mulliken charges and expectation values

Another question, which will arise to the reader’s mind, is how the expec-
tation values of both density functions will be related. However, with the infor-
mation provided so far such a question is readily answered. Starting from the
relationship:

ρ1;M ≈ 〈a|ρ0〉,
then any expectation value of a one- electron operator, Ω (r), including the
Mulliken atomic populations [6], which can be considered expectation values of
the unit operator, as discussed at the beginning, can be associated to the inte-
grals:

〈
Ω

[
ρ1;M

]〉 =
∑

I∈M

〈
Ω

[
ρ1;I

]〉 ≈ 〈a|Ω |ρ0〉 =
∑

I∈M

aI
〈
Ω

[
ρ0;I

]〉
. (20)

One can follow several paths for obtaining the optimal relationships bet-
ween the results associated to both density functions. The most straightforward
is to use the unconstrained coefficient vector as previously discussed; the alter-
native is to use a constraint associated to equation (20), which includes the ope-
rator but then, the fitting coefficients will depend on every operator studied, as
equations (17) and (18) suggest. In fact, the new coefficients can be deduced
from these expressions just substituting the Mulliken population symbol by the
appropriate atomic expectation value:

∀I ∈ M : N0;I → 〈
Ω

[
ρ0;I

]〉 ∧ NM → 〈
Ω

[
ρ1;M

]〉
.
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10. Higher order density functions

It has been easily proved that with an appropriate unitary transformation
the density function form up to any order can be written in a similar way as
equation (2) as it has been known in quantum chemistry for a long time [7].
This fact was also well known in the case of second order density functions, but
it has been proved that the extension to higher order density functions is trivial
[8]. The second order case is interesting for the obvious reason that it enters the
electronic energy expression for atomic and molecular systems. It will be studied
first; in an attempt to prove that the relationships between second order density
functions shall obey to the same rules as the first order ones. Proving so, it is a
problem of formalism details to extend such a property to any order.

A second order density function can be written using the same notation as
in the first order case, like:

ρM (r1; r2) = 〈Γ∗ |m0 ⊗ m0〉 〈m0 ⊗ m0|〉 =
∑

i

∑

j

∑

k

∑

l

γi jkl |i0 j0〉 〈k0l0| ,

where Γ = {
γi jkl

}
is a Hermitian coefficient hypermatrix, whose elements depend

on the computational level employed to obtain the molecular wave function, and
|m0 ⊗ m0〉 = {|i0〉 ⊗ | j0〉 ≡ |i0 j0〉} a column hypervector formed by the tensor
product of the one-electron MO functions. It can be adopted a convention such
that the first MO index corresponds to the coordinates of the first electron, r1,
and the second index to the coordinates of the second electron, r2, taking into
account that in the bra representation: {〈 j0i0|} such an association of indices and
coordinates will be reversed. Then, a unitary transformation can be found in
order to diagonalize the coefficient matrix; in such a way that the second order
density function can be written:

ρM (r1; r2) =
∑

i

∑

j

ωi j |i j〉 〈 j i |, (21)

with now
{
ωi j

}
being the eigenvalues of the second order coefficient matrix and

the two-electron MO basis functions {|i j〉} unitary transformations of the initial
tensor product of MO.

As in the first order case, the two-electron MO functions can be expressed
as linear combinations of the tensor product of basis functions, which can be
expressed in a column vector form:

|x ⊗ x〉 = {|µ〉 |ν〉 ≡ |µν〉},
then the MO set is expressed as a linear combination of the basis functions:

∀ (i; j) : |i j〉 =
〈
c∗

i j |x ⊗ x〉
〉
=

∑

µ

∑

ν

cµν;i j |µν〉,
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where ci j = {
cµν;i j

}
are the coordinates of the ij-th MO tensor product with res-

pect to the basis set |x ⊗ x〉. Substituting the LCAO MO expansion into the den-
sity function (21), one arrives to the expression:

ρM (r1; r2) = 〈D∗ |x ⊗ x〉 〈x ⊗ x|〉 =
∑

µ

∑

ν

∑

λ

∑

σ

Dµνλσ |µν〉 〈λσ |,

where a second order equivalent of the charge and bond order matrix can be
defined:

D = {
Dµνλσ

} =
∑

i

∑

j

ωi j ci j c+
i j ,

and in the second order projector tensor the same convention, as in the MO
case, for the assignment of the electron coordinates can be also used. Thus, a for-
mally equivalent development as in the first order case can be designed, just with
the additional complication that two indices have to be used instead of one. At
the same time the atomic projectors and the atomic density basis set have to be
adapted to the new situation, where diatomic density basis set functions shall be
operative. That is, the second order density function can be written as a super-
position of diatomic contributions:

ρM (r1; r2) =
∑

I∈M

∑

J∈M

ρI J (r1; r2).

The diatomic density basis set {ρI J (r1; r2)} can be easily written as:

∀ (I ; J ) ∈ M : ρI J (r1; r2) =
∑

µ∈I

∑

ν∈J

∑

K∈M

∑

L∈M

∑

λ∈K

∑

σ∈L

Dµνλσ |µν〉 〈λσ |.

As the correspondence between this result and the first order density one is
obvious, the rest of the first order properties and discussion can be applied into
the second order case without problems. Extension to higher order density func-
tions is, therefore, a matter of developing the adequate and, as simple as possible,
formalism. An analysis similar to the first order density can be also performed
at the light of the present results, that is: a two-center two-electron density basis
set can be defined, a metric matrix composed and thus the self similarity calcu-
lation of second order densities can be expressed by means of such basis set, as
well as two different densities associated to the same molecule can be compared
throughout the procedures already developed in the first order case.

11. Conclusions

First order density functions in LCAO framework are analyzed from the
point of view of their description as a superposition of one-center densities. This
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permits the description of an atomic density basis set, which leads to the defi-
nition of a metric, whose elements are the similarity integrals associated to the
atomic density basis set. The metric plays a relevant role into the definition of
selfsimilarity measures and also in the way two density functions, belonging to
the same molecular structure, can be compared and related. Extension to two-
electron and higher order density functions appears to be associated to equiva-
lent procedures.
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